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Let (D) be the Schwartz space of infinitely differentiable scalar functions, "',
on the real line with compact supports, 0(",), and (Q,l:, P) be a fixed complete
probability space. Let X: (D) --->0 U(Q,l:, P), with 1 < p < 00, be a generalized
random process, Le., a continuous linear transformation, T = (- 00, t), and
fIr = o(X(",) : a(",) C n, the a-field generated by the random variables. Let
{q>i}~l C (D) be such that a(q>i) C/. T, i ;;.. 1. Then relative to thep-th moment of the
error as the criterion of optimality, there exists a weak generalized random process
(Le., a closed linear transformation) Y: .@(y) --->0 U(Q, Pr, P), where .@(Y) is
dense in (D), such that \I Y(.pi) - X(.pi)\lP is a minimum for each i ;;.. 1.

INTRODUCTION

Let (D) be the Schwartz space of infinitely differentiable scalar functions
ep, on the real line with compact supports a(ep), and (Q,I:, P) be a fixed
complete probability space. Let X : (D) ---+- P(Q,I:, P), with 1 < p < 00, be
a generalized random process (g.r.p.), i.e., a continuous linear transformation,
T = (- 00, t), and f3T = a(X(ep) : a(ep) c n, the a-field generated by the
random variables. Let {ifii};:l C (D) be such that a(ifii) C/. T, i ~ 1. Then the
nonlinear prediction problem is: relative to the p-th moment of the error as
the criterion of optimality, it is desired to find a weak generalized random
process (i.e., a closed linear transformation) Y: ~(Y) ---+- VJ(Q. f3T , P),
where ~(Y) is dense in (D), such that II Y(ifii) - X(ifii)ll21 is a minimum for
each i ~ 1.

The solution to the above problem is given in this paper. An approximation
theorem is proved. These results generalize some of the results ofRao [8].
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1. PRELIMINARIES

In this section, a reformulation and generalization of some known results
of Sidak [11] will be stated without proof.

Let (D), (Q, I, P), X, T and f3T be as above, and let

ST = {rp : rp E (D), a(rp) CT}.

Since (D) is not metrizable, even though it is separable, it is not obvious that
ST is also separable, because separability is not hereditary in arbitrary
topological spaces. For a counterexample, see [7, p. 84]. However, in the
present case, one has the following

LEMMA 1.1. There exists a countable dense subset, :F, of (D) such that
ff n ST = ST.

Let ~ = {rp;}~=1 denote the countable dense subset of (D) given in Lemma
1.1, and let f3:F denote the a-field generated by {XC rp;) : rp; E ff}, then one can
consider X as a map from (D) into U(Q, f3:F , P). Henceforth, U(Q, f3:F , P)
will be denoted by U(Q, I, P) if no confusion arises. ST is closed and
separable by Lemma 1.1; in fact

is dense in ST , and f3T = a(X(rp/) : i = I, 2, , n,... ). Let

f3n = a(X(rpn, X(rpl), , X(rpnT».
All a-fields below are completed relative to P and' = ' and' C ' etc. hold a.e.

DEFINITION 1.1 [8]. Let ..,II C U(Q, I, P) be a closed linear submanifold.
..,It is said to be a measurable subspace, if there exists a unique (necessarily so,
since (Q, I, P) is complete) a-field II C I such that ..,It = U(Q, II , P), i.e.,
..,It is the set of all II-measurable functions in LP(Q, I, P), or equal a.e. to one
which is.

The following two results are trivial extensions of Sidak's [11].

LEMMA 1.3. The correspondence between sub a-fields G C I andmeasurable
subspaces U(Q, G, P) is I - I (l ~ p < (0).

LEMMA 1.4. Let {G;, i E I} be sub a-fields ofE.

(a) If G; C Gj , then U(Q, G; , P) C U(Q, Gj , P).
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(b) To every niEI Gi , there corresponds a niEI Lp(Q, Gi , P).

(c) To every a(UiEI Gi), there corresponds a a(UiEI U(Q, Gi , P», the
smallest measurable subspace containing UiEI Lp(Q, Gi , P).

2. COMPLEMENTS TO A THEOREM OF MURRAY AND MACKEY

The aim of this section is to prove Theorem 2.1 below, which improves
upon a theorem of [6], and furthermore it is used crucially in Sections 3 and 4
in showing the existence of a best predictor as a weak generalized random
process.

DEFINITION 2.1. Let U(Q, .E, P) be the Lebesgue space,.H = U(Q, f3, P)
a measurable subspace, and Xo E Lp(Q, .E, P). Then a projection (linear and
idempotent) operator, Ps : U(Q,.E, P) --+.H is termed a prediction operator
of Xo relative to f3 provided the following condition (C) holds:

(C) There exists a Yo E JI such that II XO - Yo lip <; II XO - Y lip for all
Y E .H implies Xo is in ~(Ps), the domain of Ps , and Ps(Xo) = Yo' (Ps was
called a 'closed conditional expectation' in [9]).

THEOREM 2.1. Let Lp(Q,.E, P) 1 < p < (X) be a separable space and
viI = U(Q, f3T , P). Let tff and f§' be two fixed but arbitrary countable dense
subsets of U(Q,.E, P) and (U(Q,.E, P»', respectively. .if {<Pi}:l C (D) are
such that a(<Pi) C/. T,jor every i ;); 1, then there exists a countable dense subset
C of U(Q,.E, P) depending on {<Pi}~=l' and a prediction operator PST with
domain Ll dense in U(Q, .E, P) such that

(a) LI = .H EB.AI', where (.H,.AI') is a pair of quasi-complements (i.e.,
vii () .AI' = {O} and the closed subspaces .H and.Al' are such that viI EB .AI' is
dense in U(Q, .E, P».

(b) L1:) C.

(c) Ps : LI --+.H
T

(d) Ps X(<Pi) is the best nonlinear predictor for X(<Pi) in .H simul-
T

taneously for i = 1,2,... , n, ....

Furthermore, there exists a closed linear operator, PP
T

' with domain L1'
dense in (U(Q,.E, P»', the topological dual, such that

(a*) L1' = .H' EB .AI", where (.H', .AI") is a pair of quasi-complements.

(b*) L1':) f§', a countable dense subset of (U(Q, .E, P»'.

(c*) P~T: Ll' --+ .AI".
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(d*) For every f/ E C§', P~r<f/) is the element in ,A/' closest to f/, i.e.,
P~T is also a prediction operator. Moreover, P~T is the proper adjoint of P{JT .

In order to prove this theorem, it is necessary now to recall some definitions
and facts from the theory of locally convex spaces [4, 5, 10]. In the following
discussion, if A, Bare subspaces of U(Q, E, P), then A EB B denotes the
smallest subspace of U(Q, E, P) containing both A and B with A n B = {O}.

Remark 2.1. If the linearity, of P{jT and P~T ' is not demanded, then the
result, in the present case, follows very simply even with Ll = LP(Q, E, P)
and Ll' = (U(Q, E, P»'. But the linearity will be needed for the main
problem of this paper.

DEFINITION 2.2. A pairing is an ordered pair (Z, L) of linear spaces Z
and L over the same scalar field together with a fixed bilinear functional on
their product Z x L.

The usual inner product notation <. ,.>will be used to denote the bilinear
functional.

DEFINITION 2.3. A pairing is called a duality if the bilinear functional
satisfies the separation axioms:

(a) (xo , y) = 0 for all y E L implies Xo = O.

(b) (x, Yo> = 0 for all x E Z implies Yo = O.

If Z is a locally convex space, and Z* its algebraic dual, then (Z, Z*> is a
duality where the bilinear functional is given by (x, x*> ---+ x*(x). If Z' denote
the topological dual, then (Z, Z*) induces a duality (Z, Z') on the subspace
Z x Z' of Z X Z*.

If <Z, L> is a duality, then let a(Z, L) denote the coarest locally convex
(I.e.) topology on Z for which the linear functionals x ---+ (x, y>, y E L are
continuous. a(Z, L) is called the weak topology on Z relative to the duality
(Z, L). Clearly the topological dual of (Z, a(Z, L» is L. In like manner, one
can consider a(L, Z) on L. Now let Y' be the family of all a(L, Z)-bounded
subsets of L. Then the corresponding Y'-topology (i.e., the topology of
uniform convergence on the sets in Y' [10, p. 79]) on Z, denoted by f3(Z, L),
is called the strong topology on Z relative to the duality (Z, L>.

A I.e. topology t on Z is said to be consistent with the duality (Z, L), if
(Zt)' = L. Thus a(Z, L) is the weakest I.e. topology consistent with the
duality; but in general f3(Z, L) is not consistent with the duality.

In the sequel, if Z is a I.e. space, then Z" will denote the linear space Z
equipped with the topology a(Z, Z'), and Z8 the linear space Z equipped with
the strong topology f3(Z, Z').
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If ZI , Z2 are two l.c. spaces, then a linear transformation I : ZI -- Z2 is
said to be weakly continuous if it is (a(ZI , ZI'), a(Z2 , Z2'»-continuous, and
strongly continuous if it is (f3(ZI , ZI'), f3(Z2 , Z2'»-continuous.

A I.c. space Z is said to be reflexive if (Zf/)e' = Z. For instance, (D) is
reflexive [10, Example 4, p. 147], and U(Q, 1:, P), I < p < 00 are reflexive.

Let (Z, L) be a duality. For any subset Me Z, the subset

MO= {YEL: l(x,Y)1 ~ l,xEM]

of L is called the polar of M. If M C Z is a linear submanifold, then
I(x, y)1 ~ 1 for all x E M implies (x, y) = 0 for all x EM; hence MO con
sists of those elements of L that vanish on M and so is the linear submanifold
of L orthogonal to M. Analogously, (MO)O = MOO is the polar of MO, called
the bipolar of M.

The following lemma holds true even if M 1 , M 2 are just subsets of Z.
However, since only the linear submanifolds will be of interest here, it will be
stated and proved in the present form. For the more general case. see [10,
pp. 125, 126].

LEMMA 2.1. If M 1 C M 2 , where M 1 , M 2 are linear submanifolds of Z,
then

(a) M 2°C M 1°
(b) M 1 C Mfl
(c) M 1 = M~ if and only if M 1 = KO for some linear submanifold

KCL.

Proof (a) If IE M 2°, then I( y) = 0 for all y E M 2 • This implies that
I( y) = 0 for all Y E M 1 , and hence IE M 1°.

(b) If x E M 1 , then I(x) = 0 for every IE M 1°. Consequently, x E M~'

(c) Since MfJO = (Mfl)O C M 1°, and MfJO = (M1o)oo:2 M 1° follow
from (b), hence M 10 = M~. Thus if M 1 = KO for some K C L, then
KO = Kro implies that M 1 = M~. Conversely, if M 1 = Mfl, then simply
take K = M 1°C L.

LEMMA 2.2. Let (Z, L) be a duality, and M C Z a linear submanifold.
Then M = MOO ifand only if Mis a(Z, L)-closed.

Proof If M is a(Z, L)-c1osed, then by the Bipolar theorem [10, p. 126]
one has M = MOO. Conversely, if M = MOO, then by the same theorem just
quoted, Mis a(Z, L)-closed. Q.E.D.

Remark 2.2. The operation '0' of taking polar sets up a 1 - 1 inclusion
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inverting correspondence between the a(Z, L)-closed linear submanifolds
and the a(L, Z)-closed linear submanifolds.

LEMMA 2.3. Let (Z, L) be a duality such that Z and L are No-dimensional,
i.e., have No independent generators. Then if M is any a(Z, L)-closed linear
submanifold, there exists a second a(Z, L)-closed linear submanifold N such
that M EEl N = Z and MO EEl N° = L.

Proof For proof of this lemma, see [5, Lemma 1, pp. 322-323]. Consider
now the proof of Theorem 2.1.

Proof of Theorem 2.1. Let U(Q, E, P) be the given separable space with
I < p < 00, and .$t = U(Q, f3T ,P). Since (U(Q, E, P»' is total for
U(Q, E, P) and if '§' is a countable dense subset of (U(il, E, P»', then '§' is
also total for U(Q, E, P).

Since vIt is closed, and U(il, E, P) is separable, then U(Q, E, P)jJf is also
separable. Hence there exists a countable total set .!/e' in (LP(Q, E, P)jvlt)'.
Now every member F' in (U(Q, E, P)j.-lt)' has associated with it in the
following manner a member l' in (U(Q, E, P»' which vanishes throughout
vIt.

j'(x) = F'(x + JI), for every x E U(Q, E, P).

Therefore, corresponding to .!/e', there is a countable but not necessarily
total subset '§1' of (U(Q, E, P»'. Note that each l' E '§1' vanishes on .$/
only. For, if x E Jt such that j'(x) = 0, then the corresponding F' in
(U(Q, E, P)jJt)' would be such that F'(x + .-It) = j'(x) = 0, i.e., this
implies that x + .-If = Jt, i.e., x E viI, which is a contradiction. Hence the
intersection of the null spaces ofl' in '§/ is vlt.

Let di = infYE.II{11 X(ii;) - Yllp}, i ?: 1. Then di ?: O. Without loss of
generality, one can assume that for some i, d; > 0, otherwise the problem is
trivial. Since I < p < 00, U(Q, E, P) is uniformly convex, and Jt is a
closed linear submanifold, therefore there is a unique element Y; E Jt such
that di = II X(iii) - Y i lip, for every i ?: I [2, II. 4.29].

Now consider the subset "Y of U(Q, E, P) defined by

"Y = {h : II h lip ~ II g + h lip, g E Jt},

i.e., "Y contains elements h of LP(Q, E, P) that are minimal relative to Jt.
Note that "Y is not necessarily linear but is closed [6]. Now by [6, p. 80],
every element of LP(Q, E, P) can be written as f = g + h, where g E Jt,
hE "Y. Since II h lip = Ilf - g lip, g is nearest to f in Jt. Thus let XCiii) =
Yi + Zi , where Yi E Jt, Zi E "Y, i ?: I be such decompositions.

Since LP(Q, E, P) is separable, there exists a countable dense subset C.
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tff n ./It is necessarily dense in ./It. Let ot = {X(gJi), Zi , i ~ I}, ~ = ot - J',
and Iff = ~ u J'. Then Iff is still countable, dense in LP(Q, E, P), and in fact
is total for (LP(Q, E, P»'.

Let Z = !F(Iff) denote the linear span of Iff, M = ./It n Z, and
L = !F('!f' U '!fl'), then it is claimed that M, Z, and L satisfy the hypothesis
of Lemma 2.3. For,

(a) (Z, L) is clearly a duality. For it is a pairing with the induced
bilinear functional from (LP(Q, E, P), (LP(Q, E, P»'). The induced bilinear
functional satisfies the separation axioms, since both Z and L are total in
(U(Q, E, P» and LP(Q, E, P)' respectively.

(b) It is clear that both Z and L are No-dimensional.

(c) Mis a(Z, L)-closed, for let

K = {F' : F' E L, F'(x) = 0, for every x E ./It}. (1)

Then K is a proper linear submanifold of L. This is seen as follows: Clearly
K -=1= 0, since K-::2 '!fl', and K -=1= L, for if K = L, then ./It = {O}, since Lis
total for LP(Q, E, P). Hence a contradiction. The linearity of K is trivial,
thus K is a proper submanifold of the linear manifold L. Now it will be shown
that M = KO. Since it follows from (1) and definitions of KO that Me KO,
only the opposite inclusion has to be shown. However, it is clear from (1)
that the null space of each F' E K contains ./It and that K-;). '!fl', therefore the
intersection of null spaces of F' E K equals ./It, since the intersection of null
spaces of F' E '!fl' equals ./It. Hence if z E KO, then by definition Z E Z, and
F'(z) = 0, for every F' E K. But the latter implies that z E ./It. Thus
z E Z n JI{ = M, i.e., KO C M. Thus M = KO as desired. Now by Lemma 2.1
(c), Mis a(Z, L)-closed.

From (a), (b), and (c), thus indeed M, Z, and L satisfy the hypothesis of
Lemma 2.3. Hence there exists a second a(Z, L)-closed linear submanifold N
of Z such that

(i) N = N°o,

(ii) M EEl N = Z,

(iii) MO EEl N° = L.

Now let ,AI" be the closure of N in LP(Q, E, P), then LI = ./It EEl,Al" is
dense in LP(Q, E, P), where (./It, ,AI") is a pair of quasi-complements, in the
sense of Murray [6]. For since./lt -::2 M,,AI" -::2 N, and Z is dense in £'P(Q, E, P),
so LI(= ./It EEl ,AI" -;). M EEl N = Z) is dense in LP(Q, E, P). Moreover,
./It n,Al" = {O}, since ./It = M, hence every element in MO vanishes
throughout ./It. Similarly, ,AI" = N, and N = NOO by (i) implies that every
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element in N° vanishes throughout,Al". Hence from (iii) and the fact that L is
total, it follows that ..A n ,AI" = {O}.

Observe the additional fact that LI :J C.
Thus by [6, Lemma lOb], there exists a closed projection Pn : LI ---+ Jt

T

such that if hELl, and h = f + g, wherefE..A, g E,AI" is the unique decom-
position of h relative to ..A and ,AI" as the sum of an element from ..A and one
from ,AI", then one has

In particular, since X(<p;) ELI, and X(<p;) = Yi + Zi' where Y; E..A, Z; E,AI",
for i :?= 1, one has

PnTX(<Pi) = Yi •

In other words, PnT is the prediction operator for the problem.
To prove the second half of this theorem, one proceeds as follows:
Denote,Al"' = N°. Thus,Al"' is a subspace of (U(D, l:, P»)'. Let

"Y' = {h' : II h' IIq ~ II h' + g' Ilq , for every g' E ,AI"/},

i.e., "Y' is the set of elements of (U(D, l:, P»)' minimal relative to ,AI"'. Now
for every f' E (U(D, l:, P»)', f' = g' + h', where g' E ,AI"', h' E "Y' is the
unique decomposition [6]. Now this decomposition holds in particular for
every f;' E CfJ' ~ L, i.e.,j/ = g;' + h;', g;' E ,AI"', h/ E "Y', i :?= 1.

Now denote..A' = MO, then LI'(= ..A' EEl ,AI"' :J MO EEl N°:J L). Since L is
dense in (U(D, l:, P»)', so LI' is also dense in (U(D, l:, P»)'. Moreover, by a
similar argument, one can show that..A' n ,AI"' = {O}, i.e., (..A', ,AI"') is a pair
of quasi-complements. Note however that h;' need not belong to MO, but do
belong to ..A'.

One also has the additional fact that LI ':J CfJ'.
Thus by [6, Lemma lOb], there exists a closed projection PnT : LI' ---+ ,AI"',

such that iff' E LI I, and f' = g' + h', where g' E ,AI"', h' E..A' is the unique
decomposition off' as an element from,Al"' and one from ..A', then one has

ii' = g;' + h;', g;' E ,AI"', h;' E ..A', for i :?= 1,

and, moreover,

Pn (ii') = g/.
T

However, from the definition of M, and the fact that L is dense in LP(D, l:, P),
M in ..A, one has that ..A' is simply the annihilator of ..A, and ,AI"' that of ,AI".
Thus by [6, Lemma 11], PnT is also the proper adjoint of PnT . This concludes
the proof of Theorem 2.1. Q.E.D.
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Remark 2.3. The (linear operator) Par need not be defined for all X(Ip),
since L1, the domain of Par' is only dense in U(Q, E, P).

Remark 2.4. In general, Par is not a linear predictor, i.e., if X(<PI), X(<P2),
and exX(<Pl) + f3X(<P2) E ..1, for some scalars ex, f3, then

need not be the best predictor for exX(<PI) + f3X(<P2)' (In fact, if p =1= 2, then
Par is not linear as shown in [8] for the ordinary process.)

Remark 2.5. Theorem 2. I can be generalized to the case where the range
space of XC") is any separable reflexive rotund Banach space.

3. AN EXISTENCE THEOREM

In this section, the existence of a weak generalized random process,
Y: ~(Y) -- U(D, f3T' P) such that Y(<Pi) = Yi for i ~ 1, where Yi are the
best predictors of X(<Pi), and ~(Y) is dense in (D), will be proved via the first
half of Theorem 2.1; the second half of the theorem will not be needed.

Theorem 2.1 shows that ParX(<Pi) is the best nonlinear predictor for X(<Pi)
for i ~ 1. In this section, this will be taken for granted, and held fixed
throughout the discussion.

Consider the following diagram:

(D)~ U(D, E, P) :J ..1~ U(Q, f3r , P)

(D)'~ (U(D, E, P»'~ ..1' C (U(D, f3T, P»',

where PPr is the adjoint of Par' a closed linear transformation [10,
Theorem 7.1, p. 155; Corollary, p. 156; Theorem 3.1, p.130] with domain

..1' = {y' E (U(Q, f3r, P»' : x -- <Par(x), y') is continuous on Ll}

dense in (U(D, f3T , P»', and satisfying the relation

for every y' ELl', x E ..1,

and X' is the adjoint of X, a continuous linear transformation [10, Theorem
7.4, p. 158] defined by

<Ip, X,/) = <X(Ip),j), for everyfE (U(D, E, P»', Ip E (D).
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y' = X' 0 Par: Ll' --+ (D)'.

Since PPr is a closed linear transformation and X' is a continuous linear
transformation, Y' is also a closed linear transformation with domain Ll'
dense in (LP(Q, Pr, P»', and range in (D)'.

Since (D) and LP(Q, Pr , P) are reflexive, and moreover the closure of a
convex subset C C (D) is the same for all l.c. topologies on (D) consistent
with the duality «D), (D)'> [10, Theorem 3.1, p. 130], one can conclude
from [10, Corollary, p. 156] that

Y: .P( Y) C (D) --+ LP(Q, f3r , P),

the adjoint of y', exists and is a closed linear transformation with domain

!2'( Y) = {rp E (D) : y' --+ <rp, Y'y') is continuous on Ll'}

dense in (D) and range in LP(Q, Pr , P) such that

<Y(rp),y') = <rp, Y'y'>, for every rp EEi1(Y), and y' ELl'. (2)

It is clear that Ei1( Y) :) {<Pi};:l. For, for every <Pi E {<Pi};:l, the linear
functional

= <X(<Pi)' ParY')

= <P13rX(<Pi), y')

is certainly continuous on Ll', since X(<Pi) ELl, for every i ;3 1. Hereafter, Y
will be termed a weak generalized random process.

Remark 3.1. In general, Y is not unique since Pl3r is not unique [6,
Theorem, p. 93].

Remark 3.2. [n (2), it is tempting to say that

<Y(rp), Y') = <rp, X'PsrY') = <P13rX(rp), y').

However, it is not a priori obvious that the range of X is contained in the
domain Ll of P13 .

r

LEMMA 3.1. Let X, f3r, LP(Q, E, P), etc., be as defined in Theorem 2.1. Let
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Y: .@(Y)-+ U(Q, fJT' P) be defined by Eq. (2). Then Y (a closed linear
transformation) satisfies

for every CPi E {CPi}::l .

Proof. The conclusion of the lemma follows from the fact that for every
Y' ELI',

<Y( CPi), y') = <CPi , X'PSrY')

= <X(CPi), PSrY')

= <PerX(cp;), )").

This establishes the main result of this section:

Q.E.D.

THEOREM 3.1. Let X: (D) -+ U(Q, E, P) be a generalized random
process, {CPi}f~l C (D) be such that a(CPi) C/. T. Then there exists a weak gene
ralized random process, Y: '@(Y) -+ U(Q, fJT , P) such that.@(Y) is dense in
(D) and Y(CPi) (= PerX(CPi» gives the best nonlinear predictor for X(CPi), for
i? 1.

The existence problem of the prediction theory proposed in introduction is
thus solved. In the next section, an approximation theorem for Y will be given.

4. AN ApPROXIMATION THEOREM

Let {fJn}:=l be the sequence of increasing sub a-fields as defined in Section I
such that fJn t fJT [cf. Lemma 1.2], and Yn , Y be the corresponding weak
g.r.p.'s as given by

for every Y' E Lin', cp E .@(Yn),

where Lin' is the domain of P~n ' and .@(Yn) is the domain of Yn dense in (D).
Note that, since Lin:) {X(CPi)}::l, hence '@(Yn):) {CPi}~l , for every n ? 1.
So for every CPi E {CPi}~l Theorem 3.1 implies that Y..(CPi) = Pe X(CPi) a.e. for
every n ? 1. Hence it follows from Lemma 1.3, Lemma 1.4, and the ordinary
theory [8] that Y..(CPi) -+ Y(CPi) in U-norm and also Yn(CPi) -+ Y(CPi) a.e. for
every CPi E {CPi}f=l . Thus one has proved

THEOREM 4.1. Let X: (D) -+ U'(Q, E, P) be a generalized random process,
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and Yn , Y be the weak g.r.p.'s as given by (2), corresponding to fJn , fJr where
fJn t fJr. Then for every qJi E {qJ;};:l' YnCqJ;) - Y( qJ;) in U-norm, and a/so
Yn( rp;) - Y(rp;) a.e.

5. THE SPECIAL CASE OF P = 2

In the case when p = 2, L2(Q, .E, P) is a Hilbert space. Thus if
vIt = P(Q, fJr, P) and X(rp;) E L2(Q,.E, P), d; = inf{11 X(rpi) - Y112 : Y E vIt},
then again there exists Yl E vIt such that di is attained. In fact, Yl is obtained
by taking it to be the orthogonal projection, TTB , of X(rpi) onto vIt. TTB isr r
independent of qJi , since it only depends on vIt. If

''I' = {h : II h 112 ~C( II g + h 112 , g E ...I'/},

then one can show that "r = vIt.l. In fact, this is just the content of the
projection theorem in Hilbert Space, and then the quasi-complements reduce
to orthogonal complements.

Thus for every f E P(Q, .E, P), f = g + h, where g E vIt, h E J(.l and
PBJ = g, and P{3r coincides with the orthogonal projection which is indepen
dent of g> E (D). Thus as a consequence of Theorem 3.1, Y is a g.r.p. such
that for every g> E (D), Y(g» = 7TBrX(g» is the best nonlinear predictor
relative to vIt of X(g». In this case, the g.r.p., Y, is the best nonlinear predictor
for the problem and the prediction operator P{3r = 7TBr is actually linear.

One should observe that when the g.r.p. X is real Gaussian with zero mean
functional, then the linear least-square predictor coincides with the nonlinear
predictor as in the scalar case [1, p. 561].

Remark 5.1. If {fJn}:-l is an increasing sequence of sub a-fields of.E such
that fJn t fJr , then it is obvious from the above discussion that Yn - Y in the
topology of simple convergence, i.e., YnCg» - Y(g» in P-norm for every
g> E (D), and also YnCg» - Y(g» a.e.. This result can also be deduced from
the generalized martingale convergence theorem (which will be published
shortly).

Remark 5.2. The results proved here can easily be generalized to multi
dimensional generalized random fields.
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